beandeau>
BIOINSPIRED NANOSTRUCTURED TIO₂ COATINGS FOR SUSTAINABLE ANTIFOULING: HIGH PHOTOCATALYTIC ACTIVITY, LOW TOXICITY, AND LONG-TERM STABILITY
Lylia Fellah  1, *@  , Lisa Deblock  2, 3@  , Marianne Weidenhaupt  3  , Carmen Jimenez  3  , Isabelle Linossier  1  , Claire Hellio  4  , Fabienne Fay  1  
1 : Laboratoire de Biotechnologie et Chimie Marines, Lorient, Bretagne, France
Univ. Bretagne Sud, EMR CNRS 6076, LBCM
2 : Université Grenoble Alpes
LMGP
3 : Laboratoire des matériaux et du génie physique
Institut de Chimie - CNRS Chimie, Centre National de la Recherche Scientifique, Institut Polytechnique de Grenoble - Grenoble Institute of Technology
4 : Laboratoire des Sciences de l'Environnement Marin (LEMAR)
Institut de Recherche pour le Développement, Institut français de Recherche pour l'Exploitation de la Mer, Université de Brest, Centre National de la Recherche Scientifique
* : Auteur correspondant

Marine biofouling is a major economic and ecological challenge, prompting the development of sustainable antifouling solutions. This study proposes a nanostructured TiO-based films, obtained by Aerosol-Assisted Chemical Vapour Deposition (Aerosol-Assisted MOCVD), and inspired by the natural antifouling mechanisms observed in certain microalgae. These bio-inspired surfaces are based on the generation of reactive oxygen species (ROS) and a nanometric topography. The surface topography of these films is characterised by the formation of microflower-like structures with petals of nanometric size, increasing the specific surface area and photocatalytic activity. Two synergistic effects were demonstrated: (1) increased generation of ROS (-OH, HO) under UV/visible irradiation, reducing Vibrio harveyi biofilm formation by 85%; (2) a physical anti-adhesive action, reducing Cylindrotheca closterium attachment by 49%. The ecotoxicological assessment carried out on Artemia salina and Phaeodactylum tricornutum revealed low acute toxicity (mortality <10%) and no growth inhibition or cellular damage, even after prolonged exposure. Post-exposure monitoring (78 h) confirmed the absence of any residual effect, with cells maintaining a normal growth profile. Furthermore, accelerated ageing tests in a simulated marine environment demonstrated that the TiO coatings maintain their surface chemical integrity and initial photocatalytic performance, confirming their robustness and long-term stability. These results highlight the biocompatibility and durability of nanostructured TiO films under marine conditions, reinforcing their potential as environmentally friendly alternatives to conventional biocidal coatings. This approach aligns with the goals of the blue economy: high performance, long-term sustainability, and low environmental impact.



  • Poster
Chargement... Chargement...